62 research outputs found

    Improving the accuracy of central difference schemes

    Get PDF
    General difference approximations to the fluid dynamic equations require an artificial viscosity in order to converge to a steady state. This artificial viscosity serves two purposes. One is to suppress high frequency noise which is not damped by the central differences. The second purpose is to introduce an entropy-like condition so that shocks can be captured. These viscosities need a coefficient to measure the amount of viscosity to be added. In the standard scheme, a scalar coefficient is used based on the spectral radius of the Jacobian of the convective flux. However, this can add too much viscosity to the slower waves. Hence, it is suggested that a matrix viscosity be used. This gives an appropriate viscosity for each wave component. With this matrix valued coefficient, the central difference scheme becomes closer to upwind biased methods

    Accuracy versus convergence rates for a three dimensional multistage Euler code

    Get PDF
    Using a central difference scheme, it is necessary to add an artificial viscosity in order to reach a steady state. This viscosity usually consists of a linear fourth difference to eliminate odd-even oscillations and a nonlinear second difference to suppress oscillations in the neighborhood of steep gradients. There are free constants in these differences. As one increases the artificial viscosity, the high modes are dissipated more and the scheme converges more rapidly. However, this higher level of viscosity smooths the shocks and eliminates other features of the flow. Thus, there is a conflict between the requirements of accuracy and efficiency. Examples are presented for a variety of three-dimensional inviscid solutions over isolated wings

    Mappings and accuracy for Chebyshev pseudo-spectral approximations

    Get PDF
    The effect of mappings on the approximation, by Chebyshev collocation, of functions which exhibit localized regions of rapid variation is studied. A general strategy is introduced whereby mappings are adaptively constructed which map specified classes of rapidly varying functions into low order polynomials which can be accurately approximated by Chebyshev polynomial expansions. A particular family of mappings constructed in this way is tested on a variety of rapidly varying functions similar to those occurring in approximations. It is shown that the mapped function can be approximated much more accurately by Chebyshev polynomial approximations than in physical space or where mappings constructed from other strategies are employed

    On central-difference and upwind schemes

    Get PDF
    A class of numerical dissipation models for central-difference schemes constructed with second- and fourth-difference terms is considered. The notion of matrix dissipation associated with upwind schemes is used to establish improved shock capturing capability for these models. In addition, conditions are given that guarantee that such dissipation models produce a Total Variation Diminishing (TVD) scheme. Appropriate switches for this type of model to ensure satisfaction of the TVD property are presented. Significant improvements in the accuracy of a central-difference scheme are demonstrated by computing both inviscid and viscous transonic airfoil flows

    Multigrid for hypersonic inviscid flows

    Get PDF
    The use of multigrid methods to solve the Euler equations for hypersonic flow is discussed. The steady state equations are considered with a Runge-Kutta smoother based on the time accurate equations together with local time stepping and residual smoothing. The effect of the Runge-Kutta coefficients on the convergence rate was examined considering both damping characteristics and convection properties. The importance of boundary conditions on the convergence rate for hypersonic flow is discussed. Also of importance are the switch between the second and fourth difference viscosity. Solutions are given for flow around the bump in a channel and flow around a biconic section

    Asynchronous and corrected-asynchronous numerical solutions of parabolic PDES on MIMD multiprocessors

    Get PDF
    A major problem in achieving significant speed-up on parallel machines is the overhead involved with synchronizing the concurrent process. Removing the synchronization constraint has the potential of speeding up the computation. The authors present asynchronous (AS) and corrected-asynchronous (CA) finite difference schemes for the multi-dimensional heat equation. Although the discussion concentrates on the Euler scheme for the solution of the heat equation, it has the potential for being extended to other schemes and other parabolic partial differential equations (PDEs). These schemes are analyzed and implemented on the shared memory multi-user Sequent Balance machine. Numerical results for one and two dimensional problems are presented. It is shown experimentally that the synchronization penalty can be about 50 percent of run time: in most cases, the asynchronous scheme runs twice as fast as the parallel synchronous scheme. In general, the efficiency of the parallel schemes increases with processor load, with the time level, and with the problem dimension. The efficiency of the AS may reach 90 percent and over, but it provides accurate results only for steady-state values. The CA, on the other hand, is less efficient, but provides more accurate results for intermediate (non steady-state) values

    Extension of multigrid methodology to supersonic/hypersonic 3-D viscous flows

    Get PDF
    A multigrid acceleration technique developed for solving 3-D Navier-Stokes equations for subsonic/transonic flows was extended to supersonic/hypersonic flows. An explicit multistage Runge-Kutta type of time stepping scheme is used as the basic algorithm in conjunction with the multigrid scheme. Solutions were obtained for a blunt conical frustum at Mach 6 to demonstrate the applicability of the multigrid scheme to high speed flows. Computations were performed for a generic High Speed Civil Transport configuration designed to cruise at Mach 3. These solutions show both the efficiency and accuracy of the present scheme for computing high speed viscous flows over configurations of practical interest

    The 3-D Euler and Navier-Stokes calculations for aircraft components

    Get PDF
    An explicit multistage Runge-Kutta type of time-stepping scheme is used for solving transonic flow past a transport type wing/fuselage configuration. Solutions for both Euler and Navier-Stokes equations are obtained for quantitative assessment of boundary layer interaction effects. The viscous solutions are obtained on both a medium resolution grid of approximately 270,000 points and a find grid of 460,000 points to assess the effects of grid density on the solution. Computed pressure distributions are compared with the experimental data

    Pseudo-compressibility methods for the incompressible flow equations

    Get PDF
    Preconditioning methods to accelerate convergence to a steady state for the incompressible fluid dynamics equations are considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Thus the steady state of the preconditioned system is the same as the steady state of the original system. The method is compared to other types of pseudo-compressibility. For finite difference methods preconditioning can change and improve the steady state solutions. An application to viscous flow around a cascade with a non-periodic mesh is presented

    Accurate finite difference methods for time-harmonic wave propagation

    Get PDF
    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented
    corecore